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SOME PROPERTIES OF STRUCTURAL EQUIVALENCE 
MEASURES DERIVED FROM SOCIOMETRIC CHOICE DATA * 

R o n a l d  S. BURT **  

Columbia University 

I discuss and illustrate the extent to which different relation measures and pattern similarity 
measures can be expected to generate different structural equivalence results. Measures of network 
relations and pattern similarity are reviewed to establish clear comparisons between structural 
equivalence measures. Using Monte Carlo sociometric choice data drawn from four strategically 
designed study populations, alternative relation and pattern similarity measures are combined in a 
factorial design generating six measures of structural equivalence within each study population. I 
report the magnitudes of differences between structural equivalence measures within populations, 
compared across populations. Three conclusions are drawn: (1) There is significant reliability 
across alternative measures. (2) This reliability increases with the clarity of boundaries between 
statuses in a study population. (3) The noticeable differences between structural equivalence 
measures that exist under conditions at all weaker than strong equivalence are principally a 
function of how relations are measured rather than how relation pattern similarities are measured. 
Two inferences are drawn for applied network analysis: (1) Structural equivalence should be 
computed from path distance measures of network relations (however normalized) rather than 
being computed directly from patterns of binary choice data. (2) Renewed methodological 
attention should shift from how we measure pattern similarity to how we measure relationships. 

1. Introduction 

Much of network analysis relies on the use of sociometric choice data 
to operationalize structural equivalence concepts of social structure. 
Broadly stated, analysis proceeds through something like the following 
steps: Choice data are obtained in various ways such as asking people 
to name their best friends, or the people to whom they turn for advice, 
or their spouse or live-in equivalent, or their personal contacts in other 
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firms, or the people with whom they discuss important  matters. The 
flow of direct and indirect choices between individuals is used to 
measure the strength of relations in one or more networks. Patterns of 
these relations within and across networks are then compared to one 
another with a pat tern similarity measure such as a Euclidean distance 
or a correlation coefficient indicating the extent to which pairs of 
individuals are structurally equivalent. The pattern similarity data are 
studied to locate clusters of structurally equivalent individuals, and 
each cluster is used to define a row in a density table of the original 
choice data. Social structure is then described with the distribution of 
choices in the density table and the distribution of individuals in a 
spatial map of the pattern similarity data. 

Buried in these standard steps are variations that make it difficult to 
compare analytical results across studies. One important  variation from 
study to study is the transformation of choice data into network 
relations. Another  is the measure used to compare two relation patterns 
for their equivalence, a General purpose network analysis programs 
provide alternative measures, but  available evidence for using one or 
another is largely anecdotal, involving illustrative analyses of one or 
another particular data set without reference to the diversity of network 
structures likely to be encountered in empirical research. 

My purpose is to illustrate the extent to which different relation 
measures and pattern similarity measures can be expected to generate 
different structural equivalence results. Stated in another way, this is a 
note on the extent to which structural equivalence results are reliable 
across often used alternatives for measuring network relations and 
pattern similarity. To clarify later comparisons, I begin with a brief 
review of network relation measures and pattern similarity measures 
combined within popular  structural equivalence measures. 

1 Still another is the algorithm used to aggregate and describe pattern similarity data. This is 
the third of the three key methodological decisions made in a structural equivalence analysis, but  I 
leave it beyond the scope of this paper focused on relation and pattern similarity components  in 
structural equivalence data. Fortunately, cluster analysis and multidimensional scaling methods  of 
representing structural equivalence data are much more visible in published network analyses so 
variations between methods are more widely known and discussed. 
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2. Measuring relations 

Given a network of binary choice data, path distances can be obtained 
to identify indirect connections within the network. The original choice 
data appear unchanged in the path distance data as the paths one step 
in length. Let z u represent the length of the network relation from i to 
j (0 < zq < 1) and let pd~j be the corresponding path distance ranging 
from 1 (if j is one of i 's  sociometric choices) up to a empirical 
maximum of 1 less than the number of individuals in the network (if 
the network is a chain with i at the beginning and j at the end), and on 
to a theoretical value of infinity (if there is no chain of choices through 
which i can reach j) .  It is widely agreed that an individual's direct 
sociometric choices represent stronger relationships than his or her 
relations corresponding to long chains of indirect choices, but struct- 
ural equivalence analyses by different individuals often use different 
functions to transform path distances into network relations. I dis- 
tinguish three well known alternatives. 
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Fig,  1. N e t w o r k  re la t ions  (zij) f r o m  p a t h  d i s t ances  (pdij). 
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The simplest is to ignore all indirect connections, treating the origi- 
nal binary choice data as direct measures of relationship. Such a 
function is described by the dashed line in Figure 1. Path distances are 
given on the horizontal axis and corresponding network relations are 
given on the vertical axis. This treatment of binary choice data as direct 
measures of network relations is common in analyses using CONCOR 
to construct blockmodels, although operationalizing structural equiv- 
alence with CONCOR is in no way limited to binary network data 
(e .g .  White et al. 1976: 750, 759; Arabic and Boorman 1982). This idea 
is sometimes taken to the extreme of forcing quantitative measures of 
relationship into necessarily arbitrary categories of present and absent 
ties (e .g .  Snyder and Kick 1979). However where categorical choice 
data have been obtained, using raw choice data as direct measures of 
network relations has the virtue of preserving the raw data obtained 
from respondents. The respondent named three people and those three 
people will be presumed to be the only individuals to whom the 
respondent sends relations. Even granting the arguable merit of such an 
argument, it does not extend to cover binary choice data created in 
ways never asserted by the respondents providing the original socio- 
metric data. For example, White et al. (1976: 759) recode the New- 
comb-Nordl ie  sociometric rank order data into two networks of binary 
relations; a network of liking where each person's top two rankings are 
assumed to be sociometric citations of attraction, and a network of 
antagonism relations where each respondent's bot tom two ranks are 
assumed to be antagonism citations. In the same analytical style, 
Breiger (1976) recodes the data obtained with a seven point scale of 
professional contact into multiple networks of binary contact such as 
mutual contact, asymmetric awareness, and symmetric unawareness. 
These artful recordings are advanced on the argument that structural 
equivalence is better revealed with networks of contrasting relations 
(e.g. attraction versus antagonism). This argument, nicely summarized 
by Arabic and Boorman (1982), is a significant insight and compels 
emulation. Note however that the argument is in no way compromised 
by including indirect connections within each constructed network in 
the search for structural equivalence across networks. Moreover, there 
are advantages to doing so. Networks composed of only direct choices 
tend to be sparse, creating computational difficulties for models oper- 
ationalizing structural equivalence with correlations, and lessening the 
reliability of structural equivalence measures more generally. Including 
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indirect connections in the network data used to define structural 
equivalence typically fills in much of the empty space of the initial 
choice matrix. Further, indirect connections can improve the precision 
of structural equivalence measures. Individuals structurally equivalent 
in a matrix of path distances are equivalent with respect to their direct 
as well as indirect relationships. Further, choice data are often arbi- 
trarily limited to the first two to five mentioned. Indirect connections 
such as friends of friends indicate less close contacts likely to have been 
cited if the study field work had recorded more sociometric choices. 

To take advantage of the structural equivalence information pro- 
vided by indirect connections, it is simple to measure relation strength 
as a constant function of path distance. Katz (1953) was one of the first 
to propose such a transformation by suggesting that the strength of a 
network relation be measured as a faction raised to the power of its 
correspondence path distance: 

1, 

zij= 

0, 

if i = j  

if i can reach j (1 < pdij < N - 1) 

if i cannot reach j 

(1) 

where the fraction a in Katz's numerical illustration was 0.5 and it 
continues to be set at 0.5, although Katz gave a more sophisticated 
definition of the constant in which 1 /a  is to be larger than the 
maximum eigenvalue of the choice matrix. The key point is that 
relations corresponding to long path distances are much weaker than 
relations corresponding to short ones, zij decreasing from 0.5 for direct 
choices, to 0.25 for two-step path distances, to 0.125 for three-step path 
distances, and so on. This transformation of path distances into net- 
work relations is described by the solid line in Figure 1. Note the sharp 
decay in relationship length. Relations between individuals connected 
by path distances of five or more choices (zij = 0.55 = 0.016) are nearly 
the same strength as relations between individuals completely uncon- 
nected with one another. The rate of decay with increasing path 
distance can be slowed by increasing the fraction a, but there is 
evidence to support the idea that relationship strength should decrease 
quickly beyond indirect connections through more than one inter- 
mediary (e.g. Friedkin 1984). 

There are two virtues to such a function. The most important is that 
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by bringing indirect connections into the network relations from which 
structural equivalence will be computed, it improves the precision and 
reliability of structural equivalence measures as discussed above. Sec- 
ond, it preserves the path distance information derived from the 
original choice data. You can tell immediately from the strength of a 
network relation how many choices were required to establish the 
relation (0.5 indicating a direct path, 0.25 indicating a two-step path, 
etc.). 

Still, structural equivalence measures compare the similarity of rela- 
tion patterns across individuals, and path distances of the same length 
can mean different things in different circumstances. 

One drawback to a constant function such as the above is that it 
presumes that the number of sociometric choices elicited from each 
respondent corresponds to the number of the respondent's strongest 
relations. This is a problem in its own right, and a problem com- 
pounded by the practice of eliciting a fixed number of choices from 
each respondent (e.g. Holland and Leinhardt 1973; Hallinan 1974). 
Consider two respondents, one a member of a group of four close 
friends and the other a member of a group of six close friends. If each 
is asked to name their three best friends, then the first respondent has 
no problem because the number of elicited choices equals the boundary 
of his social circle of close friends. Two-step path distances will 
represent relations beyond his social circle. The second respondent can 
only name three of his five close friends and some two-step path 
distances from him will refer to his relations with uncited close friends 
through his cited friends back to friends he was unable to cite. 

A second drawback to a constant function such as the above is that 
it presumes that relationship strength decays with increasing path 
distance at the same rate for all people. For example, if a respondent 
names three best friends who in turn each name three and none of the 
choices go to the same people, then the respondent has nine relations 
corresponding to two-step path distances. If another respondent names 
only one best friend who in turn names only one, then the respondent 
has only one two-step path distance relation within a small social circle 
of three people including himself. On the presumption that relations 
require energy to sustain, the second respondent's two-step path dis- 
tance, reaching fewer people within a smaller social circle, indicates a 
stronger relationship than the many relations corresponding to two-step 
path distances from the first respondent. 
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A third alternative to measuring relation strength is to use a variable 
rate decay function based on path distance and aspects of the struct- 
ural circumstances in which a path distance occurs. For example, Burt 
(1976: 118-119; 1982: 28-29) proposed the following function to 
prepare choice data for a structural equivalence analysis: 

1, 

Z i j  = I -- f i j n i ,  

O, 

if i = j  

if i can reach j (1 _< p d i j  < N - 1) 

if i cannot reach j 

(2) 

where n~ is the number of individuals that i can reach including 
himself in any number of choices and f~j is the number of individuals 
that i can reach in the minimum number of choices needed to connect 
her with j. This is the default option in STRUCTURE for computing 
structural equivalence from siometric choice data so the function may 
be more widely used than it is known. Unless network relations are 
explicitly requested to equal input binary choice data, path distances 
will be derived from binary choice data and used in the above function 
to measure network relations. The argument for this transformation 
(and any other variable rate decay function of path distances) is that 
the rate at which the strength of a relation decreases with the increasing 
length of its corresponding path distance should vary with the social 
structure in which it occurs. Here, decay is a function of the number  of 
people reached at each path distance compared with the total number  
reached at the boundary of an individual's social circle. The larger the 
group over which one has to distribute one's time and interpersonal 
energy, the weaker the relationship one can sustain with any one 
member of the group and the stronger the relations with people of 
relatively short path distance from you in the group. 

Figure 2 illustrates the variation in relation strength possible around 
a given path distance in a network of 50 individuals. The extremes 
possible are indicated by dashed lines. If the network were a chain with 
the first person citing the second who cites the third and so on through 
the 49th person citing person 50, then the strength of relations for the 
first person would look like the dashed line at the top of Figure 2. Very 
few people are reached at each path distance, so it would be easy to 
sustain strong relations with individuals of path distance, two, three, or 
four steps away and these people are dramatically closer than the 
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Fig. 2. Network relations (zu) from path distances (pdij) in 100 networks of uniform random 
choices among 50 people each making 3 choices. 

49-step outer boundary of the social circle around the first person. In 
contrast, if the network were a complete graph with every person 
making the 49 citations required to connect him or her directly to every 
other person, then the strength of direct ties would be very weak given 
the difficulty of sustaining so many relationships at the same strength 
and the fact that direct ties define the outer boundary of each person's 
social circle. This is illustrated by the lowest dashed line in Figure 2. 

Between these extremes in the graph are results more likely to be 
obtained in empirical research. The results describe 100 random net- 
works of 50 people in which each person made 3 sociometric choices 
equally like to go to each other person. 2 No path distances were longer 
than 9 choices and the strength of relations decays quickly with path 
distance increasing beyond two-steps. The bold solid lines describes the 
mean values of zij for each path distance. The area of vertical strips 

2 Random sociometric choice data have been generated for this paper using the Monte Carlo 
options in STRUCTURE (Burt 1987) with a 6 3 9  seed number beginning each separate series of 
replicate networks. 
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indicates the variation in zij around each path distance length. For 
example, a four-step path distance represented a relationship of 0.510 
strength for people reaching a small proportion of their contacts in four 
choices (top of the striped area) but it represented a much weaker 0.020 
strength relationship for people who reached most of their contacts in 
fewer than four choices (bottom of the striped area). 

Figure 3 illustrates the effect on the decay function of varying 
network size and number of sociometric choices. The results are based 
on relations in 100 networks with each respondent making the indi- 
cated number of sociometric choices drawn from a uniform random 
distribution across all other individuals in the network. As in Figures 1 
and 2, path distance is given on the horizontal axis and the mean 
corresponding network relations is given on the vertical axis. A three 
choice limit is most popular (bold solid line in Figure 3) with few 
studies eliciting only two choices (light solid line in Figure 3) and few 
studies eliciting as many as five choices (bold dashed line in Figure 3). 
The rate at which relation strength decays with increasing path distance 
speeds up with the number of choices elicited (which increases the 
number of people reached with each length of path distance) and slows 
with increasing network size (which increases the likelihood of long 
path distances). 

Here again, there are virtues and drawbacks. Like the constant 
function proposed by Katz, this measure has the virtues of incorporat- 
ing indirect connections in the network data used to compute structural 
equivalence. Beyond the constant function, this measure adjusts the 
strength of relation implied by a path distance for the structural 
context in which the path distance occurs. However, the measure does 
this in an arbitrary way. There is no systematic evidence to support the 
function relating relation decay to the number of persons reached at 
each path distance; it is simply less obviously wrong than a constant 
decay function such as the one proposed by Katz and can draw some 
legitimacy from evidence on limits to the information that people can 
process simultaneously (e. g. Miller 1956). 

3. Measuring pattern similarity 

Lorrain and White's (1971) structural equivalence concept came to 
operational fruition in the mid-1970s with a flurry of articles proposing 
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categorical models of structural equivalence, termed blockmodels (e. g. 
Breiger et al. 1975; White et al. 1976; Arabie and Boorman 1982), and 
continuous distance models (e .g .  Burt 1976, 1977, 1982). The concept 
quickly evolved into more sophisticated, more intuitively appealing, 
more abstract models of equivalence (e .g .  Sailer 1978; Winship and 
Mandel 1983; White and Reitz 1983), but structural equivalence re- 
mains the workhorse concept guiding substantive network studies of 
social structure, and the focus on my attention here. 

Two individuals are structurally equivalent within a network to the 
extent that they have identical relations with every potential source and 
object of relations in the network. Measuring such a condition is a 
standard problem in the analysis of data profiles, with Cronbach and 
Gleser's (1953) review article still providing the classic statement of the 
profile level, scatter, and shape components in measures of profile 
similarity. The pattern, or profile, of relations defining individual j ' s  
network position can be arranged in a vector Zj of 2N relation 
variables; N variables measuring j ' s  relations to others (Zj l  , Z j 2 , . . .  ZjN ) 
and N variables measuring the relations received from others 
(Zjl ' zj 2 . . . .  ZNj)" 3 The extent to which individuals i and j are involved 
in identical relations so as to be structurally equivalent can be ex- 
pressed as the Euclidean distance between their relation patterns (c f .  
Cronbach and Gleser 1953: 459): 4 

= ( [ ( z j -  z,)'(zj- z,)])  (3) 

where ' indicates transpose. This Euclidean distance between raw 
relation patterns is the default measure of structural equivalence in 
STRUCTURE. Dividing by the number of relations compared yields 
the root mean squared difference, the average difference in someone's 
relation with i versus his corresponding relation with j (these are the 
Euclidean distances generated by SYSTAT): 

dij(m , = ( [ ( Z j -  Z i ) t ( l j  - Z i ) ] / [ 2 N ] )  1/2, 

3 The extension to multiple networks is obvious and irrelevant to this note so equations are 
stated for structural equivalence within a single network. To get the equations for structural 
equivalence across K networks add a subscript k to each relation variable and sum relations 
across all K networks. 

4 These equations change slightly if diagonal elements in the choice matrix, relations with 
oneself, are arbitrary cons t an t s - - a s  is typically the case with relations derived from sociometric 
choice data (e.g. see Burt 1987: 21). 
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which is merely the raw Euclidean distance divided by a constant, the 
square root of 2N. The decision to use one or the other depends on the 
weight to be given to missing relations. The raw Euclidean distance 
measure ignores all relations beyond those involving i or j .  The mean 
Euclidean distance averages differences between existing relations across 
as possible relations. Adding isolates to a network, for example, will 
decrease mean Euclidean distances but  have no effect on raw Euclidean 
distances. This is a minor issue, of interest principally where metric 
distances will be compared across networks of different sizes. 

Mean differences between patterns are a more serious concern. For  
example, i npu t -ou tpu t  tables provide network relations between sec- 
tors of an economy. Relations are typically measured as the dollars of 
commodi ty  sold by establishments in the row sector to establishments 
in the column sector. Economic and sociological theory about  the 
structure of production relations, however, is not  concerned with 
dollars of sales so much as they are concerned with the relative strength 
of relations. The raw inpu t -ou tpu t  table data are usually divided by  
the column marginals of the table to produce network relations measur- 
ing the proport ion of input to each column sector that is purchased 
from each row sector. In sociometric data, individuals can differ in 
their average tendencies to be involved in relations as a function of 
response bias or inaccurately measured relations, some seeing them- 
selves as very active socially and being often cited while others report 
few contacts and themselves escape notice in other's citations. To 
control the effect of such differences on structural equivalence mea- 
sures, the "level" component  in relation patterns can be removed by 
subtracting out the mean strength of an individual's relations. Distance 
will be the root mean squared differences between relations adjusted 
for means (c.f. Cronbach and Gleser 1953: 460): 

di j (d )= ( [ ( / j  --  Z i ) t ( Z  j -- Zi)]/[2NI) 1/2, (4) 

with vector elements defined as, 

z ,  = =  zik- 

and Zj  is a 2 N  vector of elements each equal to the mean, ~-j, of all 
relations involving person j (the mean for all elements in Zj).  These 
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distances can be computed as follows from the variances of i 's and j ' s  
relations and the covariance between their relations: 

_ ~ 1 / 2  

+ s, 2 , , , )  , 

where sj is the standard deviation of j ' s  relations (the standard 
deviation of all elements in Zj, s 2 = ( Z j -  Z j ) ' ( Z j -  Zv) /2N)  and s ij is 
the covariance between j ' s  and i 's relations. 

Further, again as a function of response bias or inaccurately mea- 
sured relations, individuals can differ in the amplitude of their relation- 
ships, some individuals reporting relations that range from intensely 
close to intensely hostile while other individuals report little variation 
between their relationships. To control the effect of such differences on 
structural equivalence measures, the "scatter" component in relation 
patterns can be removed by dividing each relation by the standard 
deviation of an individual's relations. Distance will be the root mean 
squared difference between relations adjusted for means and standard 
deviations: 

d , . , ( s , -  ([ ( Z , -  Z,) '  ( Z , -  Z , ) ] / [ 2 N ]  )1/2, (5) 

with vector elements defined as, 

z,= ( z , -  < )/s,= { t=,k - e,t/s, }. 

These distances could be computed as follows from the correlation (r  i j)  
between j ' s  and i 's relation patterns (cf .  Cronbach and Gleser 1953: 
461): 

aijCs~ [2(1 ,1,/2 = - -  r i j ) ]  , 

so, in other words: 

r , = O - < . , ) / 2 ,  (6) 

which makes it clear that the correlation between two relation patterns 
(the measure of structural equivalence in CONCOR) is proportional to 
the Euclidean distance between the two patterns stripped of their 
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Fig, 4. Spatial maps of structural equivalence with and without level and dispersion components  
in relation patterns. 

means and standard deviations. This is an important  link between two 
ostensibly different pattern similarity measures often contrasted in 
debate over structural equivalence measures. The same structural 
equivalence results would be obtained from the clustering or multidi- 
mensional scaling algorithms typically used in network analysis if the 
rij or the du(s ) were used to measure structural equivalence. 

Very different structural equivalence results can be obtained with 
these measures. The verb should be emphasized; different results can 
be obtained, but different results will not always be obtained. The 
stronger the similarity between two relation patterns, the less it matters 
which of the alternatives is used to measure structural equivalence. I 
will return to this point in a moment.  

Arguments  for measuring structural equivalence as similarity be- 
tween raw relation patterns do not rule out the value of holding level 
and scatter constant in some data sets. Rather, they inveigh against the 
indiscriminate use of such controls because relation pat tern level and 
scatter can be significant features of social structure in a study popula- 
tion (e.g. Burt 1982: 47-48, 1986; Burt and Minor 1983: 274-277). 5 
The potentially different results possible with these measures are il- 
lustrated in Figure 4 with three spatial maps of structural equivalence 

5 The one published argument  for holding level and scatter c o n s t a n t - - a m o n g  the many 
analyses in which they are merely held constant  by default without an explanation for holding 
them cons tan t - -a rgues  that variation in the margins of a network is not  structural information 
and so should be held constant  before beginning the search for structural equivalence (Faust  and 
Romney 1985). This assertion seems to me just  too sweeping for the the variety of ways in which 
relations are measured in empirical research. 
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measures computed for the following hypothetical network (where 
integer values of relations are used to highlight the point being il- 
lustrated): 

- 3 3 3 3 0 

3 - 0 4 2 0 
3 0 - 0 1 0 
3 4 0 - 0 0 
3 2 1 0 - 0 
0 0 0 0 0 - 

The spatial maps are routine STRUCTURE output based on the first 
and second eigenvectors for the distance matrix. Structurally equivalent 
individuals are close together in the map. In the first map, structural 
equivalence is computed from patterns of raw relations (Equation 3). 
Note that the central figure, person 1, is far away from the network 
isolate, person 6. Very different relations define their positions in the 
network. But the principal difference between the central figure and the 
isolate is the mean strength of their relations with others. When levels 
are removed from relation patterns, the center and periphery of the 
network are folded in upon one another. In the second and third maps 
in Figure 4, the leader and the isolate are right next to one another. 

The alternative pattern similarity measures are all readily available 
(e. g. as distance options in STRUCTURE), but in large part because 
of default options in readily available computer programs, structural 
equivalence is most often measured as similarity in all aspects of 
relation pattern (e. g. Euclidean distance between raw relation patterns 
in STRUCTURE) or with level and scatter held constant within 
relation patterns (e.g. correlation between relation patterns in CON- 
COR, ie. Euclidean distance between z-score relation patterns in 
STRUCTURE). Comparisons across studies have been further made 
difficult by specific pattern similarity measures being used typically 
with a single kind of relation measure, CONCOR being used typically 
to measure structural equivalence from z-score patterns of binary 
network relations and STRUCTURE being used typically to measure 
structural equivalence from raw patterns of network relations based on 
path distances normalized by the above described frequency decay 
function. 
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4. Study design 

Combining the three relation measures with the two most different and 
most often used measures of pattern similarity defines six structural 
equivalence variables in the factorial design given in Table 1. The first 
is the matrix of raw Euclidean distances (Equation 3) between patterns 
of binary relations. A vector, D1, contains the N ( N -  1) /2  distances 
below the diagonal of the N by N distance matrix. The second 
variable, D2, contains Euclidean distances between raw patterns of 
network relations based on path distances normalized by the constant 
decay function (Equation 1), and the third variable, D3, contains 
Euclidean distances between raw patterns of network relations based 
on path distances normalized by the variable rate decay function 
determined by the number of individuals reached at each path distance 
(Equation 2). The fourth, fifth, and sixth variables (D4,  D5, and D6) 
contain Euclidean distances between patterns of z-score network rela- 

Table 1 
Factorial design generating structural equivalence measures 

Structural equivalence measure 

D1 D2 D3 D4 D5 D6 

Relation measure 

Binary choice data x 

Constant  decay function 
based on path  distance × 

Frequency decay function 
based on path distance 

Pattern similarity 
measure 

Raw relation pattern × × 

Z-score relation pattern 

X X 

X X X 

Note Each of the six structural equivalence measures is a combination of a relation measure and a 
pattern similarity measure as indicated by the x s. For example, D1 contains the 1770 elements in 
lower diagonal portion of the distance matrix computed by comparing patterns of raw binary 
relations. The constant  rate decay function is given in Eq. (1) and the frequency decay function is 
given in Eq. (2). The Euclidean distance based on comparing raw relation patterns is given in Eq. 
(3) and distance based on comparing z-score relation patterns is given in Eq. (5) with its 
transformation into a correlation coefficient given in Eq. (6). 
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tions (Equation 5)-- that  is to say correlations (Equation 6)--respec- 
tively based on the three alternative relation measures. 

This study design thus covers the domain of most often obtained 
structural equivalence measures, ranging from correlations between 
patterns of binary network relations (CONCOR), through many never 
used alternatives, to Euclidean distances between raw patterns of 
network relations based on path distances normalized by the frequency 
decay function (STRUCTURE).  I have not included distance between 
patterns of deviation score relations because this alternative has never 
to my knowledge been used by itself and it lies between the included 
alternatives of raw relation patterns at one extreme and z-score relation 
patterns at the other extreme. 

I am looking for components in the covariation between the alterna- 
tive structural equivalence measures. When structural equivalence in a 
study population is detected similarly by each of these measures, the 
correlation matrix among the six variables will have a rank of one, each 
variable D1 through D6 similarly measuring the relative extent to 
which pairs of individuals are structurally equivalent. Alternatively, 
when correlation measures of structural equivalence generate results 
different from measures based on raw relation patterns--regardless of 
the manner in which relations are measured- - then  the correlations 
among D1, D2, and D3 and the correlations among D4, D5, and D6 
will be stronger within each group than between the groups. When 
structural equivalence based on binary network relations is distinct 
from structural equivalence based on path distances--regardless of 
whether patterns of raw relations or patterns of z-score relations are 
compared- - then  D1 and D4 will be more strongly correlated with one 
another than either is with other measures. 

I will look for these covariance components in a Monte Carlo 
network analysis of four study populations. The study populations have 
been designed to range from the extreme of random relations through 
the other extreme of social structure defined by structural equivalence 
under a strong criterion. With structural equivalence increasingly clear 
across these study populations, comparisons across the study popula- 
tions should show increasing similarity between the alternative struct- 
ural equivalence measures. 

Using the Monte Carlo options in STRUCTURE,  I drew 100 
replicate networks in each study populations of 50 people, recording 
three sociometric choices from each respondent, prohibiting self cita- 
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Table 2 
Density tables for four study populations 

Uniform random 

Center-per iphery 

0.061 0.061 0.060 
0.059 0.062 0.059 
0.059 0.059 0.062 

0.024 0.087 0.048 
0.023 0.091 0.048 
0.022 0.091 0.047 

Multiple status 0.295 0 0 
hierarchy 0.100 0.100 0 

0 0.075 0.075 

Strong equivalence 1.00 0 0 
multiple status 1.00 1.00 0 
hierarchy 0 1.00 1.00 

Note: Each density table is based on 100 networks of binary choices among 50 people with 
persons 1 through 10 assigned to the first position, persons 11 through 30 assigned to the second 
position, and persons 31 through 50 assigned to the third position. Choices were generated at 
random from distributions discussed in the text. 

tions. 6 Each run producing one of the structural equivalence measures 
(D1, D2, D3, D4, D5, or D6) began with the same random seed 
number, 639, so each of the alternative measures is based on the same 
initial 100 networks of sociometric choice data. Density tables for each 
study population are presented in Table 2. The first 10 people are 
assigned to position one, the second 20 are assigned to position two, 

6 Three is an upper limit like the limit imposed by fixed choice sociometric questionnaire 
items. Like the fixed choice sociometric item, this limits the variation in the choice matrix row 
marginals to focus on variation in the column marginals. Also like the data  generated by fixed 
choice sociometric items, some variation in number  of  choices is possible from one row to the 
next. If a row person cited persons 3, 4, and 4 - -c i t ing  person 4 twice- -on ly  two choices were 
recorded from the row. In practice, with the ratio of choices to network size so small, most  
respondents made three separate choices. This can be seen from the magnitudes of the cell 
densities in Table 2 for the uniform random networks. However, where choices are constrained to 
a small number  of people receiving choices, the odds of row individuals making three different 
choices go down. The most  extreme example here are the choices made in the third s tudy 
population among the 10 occupants of the top position in the multiple status hierarchy. Their 
choices were limited to other leaders, so the odds of any 2 choices going to any one of the 9 
potential recipients are relatively good. The 0.295 density of ties among  them reported in Table 2 
means  that each occupant cited an average of 2.7 different people rather than the 3 possible. 
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and the remaining 20 are assigned to position three. Position assign- 
ments in the first two study populations are merely for illustration. 7 

The first study population has no social structure. Each of the 50 
respondents made three sociometric choices equally likely to go to each 
other person in the network. With 3 choices distributed among 49 
people, each person has a 0.061 probability of being cited by any one 
other person. Note in Table 2 that the cells of the density table 
averaged across the 100 uniform random networks are all about the 
same and close to this expected value. Social structure in this study 
population is no more than random noise. 

The second population has a center-periphery structure. Again 100 
networks were drawn in which each of the 50 respondents made three 
sociometric choices, but here the choices were drawn from a normal 
probability distribution. In other words, people in the middle of the 
network were more likely to receive choices than people at the begin- 
ning or end of the network. Note in Table 2 that the cells in the middle 
column of the center-periphery density table are higher than the cells 
in the first or third columns. The cells in the third column are higher 
than those in the first column because the first is occupied by 10 people 
at the far left of the probability distribution. The 20 occupants of the 
third position are distributed closer to the center of the probability 
distribution and so more likely to be cited. There is structure here, 
unlike the first study population, but it is contained entirely in the 
marginals of the choice matrix. This is similar to the structure of the 
HAMS network used by Bernard et al. (1980) Burt and Bittner (1981) 
Faust and Romney (1985), and Burt (1986) to compare structural 
equivalence results obtained from raw relation patterns with results 
obtained from z-score relation patterns. 

The third study population is a multiple status hierarchy. Structure is 
evident in the marginals and within the choice matrix. The 100 net- 
works were drawn for 50 individuals making three choices equally 

’ This is a fitting point to note that generating these data is a simple matter with suitable 

hardware. On a 12 MHz IBM compatible microcomputer writing extensive data output to hard 

disk, STRUCTURE required 50 minutes to generate the 122,500 scores in Dl and a noticeably 

longer 195 minutes to derive path distances, normalize relations, and standardize relation patterns 

for the 122,500 scores in 06. In all, with merging and editing, a microcomputer worked for a 

couple of days generating the structural equivalence data on each study population. Ample scratch 

space on a mass storage device is essential. Slightly less than 15 megabytes of data were produced 

for each of the first three study populations. 
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likely to go to each other person in the network. However, the range of 
the distribution was constrained differently for different statuses by 
constraining random choices to nonzero cells in a target image matrix 
(given by the density table for the fourth study population in Table 2). 
The 10 leaders at the top of the hierarchy were constrained to choose 
one another, so there is a high density of choices among them. The 20 
brokers in position two could chose one another or any of the leaders 
in position one. The densities in the second row for this study popula- 
tion are lower than the 0.265 in the first row because each person's 
three choices were spread over three times as many people (30 rather 
than 10). The remaining 20 people, at the bot tom of the hierarchy, 
could chose one another or any of the brokers in position two and so 
spread their relations over even more people (40), generating the lowest 
densities in the table for this study population. 

The fourth study population has the same structure as the third 
except that nonzero densities now equal their maximum value. Every 
occupant of a position cites every other occupant of his position. Every 
broker cites every leader. Every occupant of the bot tom position cites 
every broker. The social boundaries around structurally equivalent 
people in this population are extremely clear and so should be re- 
covered by almost any structural equivalence measure. 

5. Results 

There are 122,500 scores on each of the structural equivalence variables 
in each study population (1,225 distances between pairs of 50 people 
within each of 100 networks). 8 Since structural equivalence under 
anything less than a strong criterion is defined in relative t e rms- - two  
relation patterns being more similar than specific other pairs of pat- 
t e rns- - I  analyze correlations among the six structural equivalence 
variables rather than covariances or sums of squares. The correlation 
matrix among the six structural equivalence measures within each study 
population has been disaggregated into its six principal components.  
The eigenvalue defining each component  is plotted in Figure 5, increas- 

8 Note, however, that each of the networks drawn from the fourth s tudy populat ion is identical 
to every other network from the population since all allowed choices have been made in every 
network. 
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ing from left to right within each graph. Dividing these magnitudes by 
six, the total variance in the correlation matrix, yields the ratio often 
presented as the proportion of variance described by a principal 
component. 

There is substantial reliability across alternative structural equiv- 
alence measures. Variance is concentrated in the maximum eigenvalue 
to the right of each graph, indicating that the relation and pattern 
similarity measures generate very similar, reliable, structural equiv- 
alence results. This is minimally so in the uniform random network (to 

4.0B 

t . z6  ~ 1  1.i3 
~ ~ ~ . . T t . . . ~ . . ~ - - - -  .......................... o...~ . . . . . .  

Uniform Random Network Center-Periphery Network 
5.93 

4.32 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.96 
0.6 

Multiple Status Hierarchy 
0 0 0 0.002 0.07 

Strong Equivalence 
Multiple Status Hierarchy 

Fig. 5. The reliability of structural equivalence results increases with the clarity of status 
boundaries in social structure (eigenvalues of the correlation matrix among six measures of 
structural equivalence within each study population). 
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the upper left of Figure 5). But even there, where network structure is 
no more than random noise, a single principal component describes 64 
percent of the variance in the six structural equivalence measures. 
Where status boundaries are defined by strong equivalence, the alterna- 
tive measures yield results virtually identical across measures (to the 
lower right of Figure 5). A single principal component describes 99 
percent of the alternative measure variance in the strong equivalence 
multiple status hierarchy. 

These results are encouraging, but unrealistic by some unknown 
amount. In these principal component results, structural equivalence 
reliability is not distinguished from method covariance. This point can 
be illustrated with the covariance structure diagrammed in Figure 6. 
The factorial design defines five methods factors potentially generating 
covariation between the six structural equivalence measures. Measures 
D1, D2 and D3 are all based on similarity between raw relation 
patterns. Measures D4, D5 and D6 are all based on similarity between 
z-score relation patterns. Measures D1 and D4 are both based on 
treating binary choice data as direct measures of relations. Measures 
D2 and D5 are both based on the constant decay function of path 
distance and measures D3 and D6 are both based on the frequency 
decay function of path distance. The remaining covariation between the 
six structural equivalence measures, captured in the D~i variable in 
Figure 6, measures reliability with methods factors held constant across 

RAN PATTERN Z SCOaE PATTERN 

/ 

D1 D2 D3 D4 D5 D6 

BINAAY CONSTANT FHEtUENCY 

Fig. 6, Components in structural equivalence reliability across measures of network relations and 
pattern similarity. 
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the structural equivalence measures. More specifically, with all factor 
loadings set to 1.0, the standard deviation of Dij will vary from 0 to 1 
with the reliability of structural equivalence results within each study 
population. Least squares estimates of the Dij standard deviation are 
0.691 in the uniform random structure, 0.693 in the center-periphery 
structure, 0.736 in the multiple status hierarchy, and 0.990 in the strong 
equivalence multiple status hierarchy. 9 These reliabilities are high and 
increase (with increasingly clear status boundaries) across the study 
populations in a manner similar to the increasing eigenvalues in Figure 
5. This point is clear in Figure 7. The estimates of reliable variance 
adjusted for methods factors (variance of Dij in Figure 6) are plotted 
across the study populations with the principal component estimates of 
reliable variance (ratio of maximum eigenvalue in Figure 5 to total 
variance). 

Before becoming sanguine about these results, note two points: 
Reliability increases in Figure 7 only slightly from the completely 
random networks to the center-periphery networks, to the network 
drawn from a multiple status hierarchy. The major increase occurs in 
the fourth study population where status boundaries are defined by 
strong structural equivalence. Further, a single principal component 
dominates the correlation matrix among alternative measures only in 
the fourth study population. In this study population, the relation 
patterns of all individuals occupying a status are identical. Such a 
condition is rare in empirical research, and below this extreme clarity 

9 The estimates were obtained numerically with the least squares algorithm in LINCS 
(Schoenberg 1987) for a factor analysis model in which the factor loading matrix was completely 
constrained to the following pattern: 

1 1 0 1 0 0  
1 1 0 0 1 0  
1 1 0 0 0 1  
1 0 1 1 0 0  
1 0 1 0 1 0  
1 0 1 0 0 1  

where rows refer to the six structural equivalence measures and colunms define the seven factors. 
Residual variance in the six observed measures was unconstrained. Variance in the reliability 
factor (Dij) was unconstrained, and variance of the six methods factors was unconstrained. The 
model contains 12 unknown variances to be estimated from 15 observed moments .  Each unknown 
variance is identified. The high reliability of the measures resulted in small negative estimates for 
four of the 24 residual variances estimated across the four study populations. Negative variance 
estimates were constrained to a value of 0.0001 and parameters were re-estimated. 
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Fig. 7. Aggregate reliability (Fig. 5) and refiabihty adjusted for methodsfactors (Fig. 6)increase 
similarly across the study populations. 

of status boundaries, there is substantial methods variation in struct- 
ural equivalence results. This is illustrated in Figure 5 by the magni- 
tudes of the second principal components. It is illustrated in Figure 7 
by the solid line for adjusted reliability being much lower than the 
dashed line describing reliability with structural equivalence and meth- 
ods factors confounded. The two lines in Figure 7 only meet for the 
strong equivalence hierarchy of the fourth study population where 
there is virtually no methods covariance between the alternative struct- 
ural equivalence measures. 

Figure 8 shows how the alternative measures contribute to the 
second dimensions within each study population. The six measures are 
positioned in the graph for each study population according to their 
loading on the first principal component (horizontal axis, measuring 
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structural equivalence reflected in all the measures) and their loading 
on the second principal component  (vertical axis, measuring an amal- 
gam of the methods factors in Figure 6). The dashed lines in each 
graph cross at the zero point on both axes. The large first eigenvalue in 
the correlation matrix for each study population shows up in Figure 8 
with all six structural equivalence measures loading positively on the 
first principal component  (far right on the horizontal axis). The similar 
results obtained with any of the measures in the fourth study popula- 
tion shows up in the graph at the upper left comer of Figure 8 with all 
six measures appearing next to one another at the top of the first 
dimension with almost no variation in the second dimension. 

The new information communicated in Figure 8 concerns the rela- 
tive importance of relation versus pattern similarity measures for 
differences between the structural equivalence measures. Three points 
in particular are illustrated. First, note that structural equivalence 
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Fig. 8. Relation measures contribute more than pattern similarity measures to the unreliability of  
structural equivalence results (loadings of each structural equivalence measure on the first two 
principal components  within each study population). 
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variables based on the same relation measure are closer together than 
are variables based on the same pattern similarity measure; D1 is 
always close to D4, D2 is always close to D5, and D3 is always close 
to D6. In other words, the principal differences between the alternative 
structural equivalence measures stem not from differences between 
pattern similarity measures (raw relation patterns versus correlated 
relation patterns) but rather from the differences between relation 
measures. Second, note that the most deviant results are obtained when 
binary choice data are treated as direct measures of network relations. 
To the extent that the six structural equivalence variables differ in a 
population, D1 and D4 differ most from the other measures. The 
difference between the constant decay function (D2 and D5) and the 
frequency decay function (D3 and D6) is discernible, but negligible in 
comparison to the difference between any of the four measures and the 
two based directly on binary choice data. Note also that when D1 and 
D4 are most different from the other measures, D4 is always closer to 
the structural equivalence results obtained with path distance measures 
of relationship. This is at least a comforting note for the early struct- 
ural equivalence analyses based on correlated patterns of binary data. 
In these data, more reliable structural equivalence results are obtained 
by correlating binary choice data than by computing Euclidean dis- 
tances between raw patterns of binary choice data. 

6. Conclusions 

I draw three conclusions from these results. First, there is significant 
reliability in structural equivalence results across alternative measures. 
Second, this reliability increases with the clarity of boundaries between 
statuses in a study population. Third, the noticeable differences be- 
tween structural equivalence measures that exist under conditions at all 
weaker than strong equivalence are principally a function of how 
relations are measured rather than how relation pattern similarities are 
measured. The differences between structural equivalence measured as 
similarity between raw relation patterns versus similarity (correlation) 
between z-score relation pattern are trivial in comparison to the 
differences produced by treating binary choice data as a direct measure 
of relationship rather than measuring relations to take into account 
indirect connections through multiple step path distances. I stress once 
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again that these results concern measures of structural 
equivalence--measures of the extent to which two relation patterns are 
identical. The results lead to no conclusions about the more abstract 
equivalence models that have been proposed in papers by Mandel, 
Reitz, Sailer, White, and Winship. The results presented here do raise 
interesting questions about the magnitude of differences among these 
models relative to differences in measuring relations, but in this paper I 
have focused on measures of structural equivalence, the class of equiv- 
alence measures typically used in contemporary empirical research to 
operationalize network positions. 

The inference for applied network analysis is that (a) structural 
equivalence should be computed from path distance measures of net- 
work relations (however normalized) rather than being computed di- 
rectly from patterns of binary choice data, and (b) renewed meth- 
odological attention should shift from how we measure pattern similar- 
ity to how we measure relationships. 
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